

5. After losing the original downhill sled race to Calvin, Hobbes demands a rematch. This time, Calvin cheats by attaching a mass to Hobbes's sled. As a result, Hobbes acceleration was only $1.5 \mathrm{~m} / \mathrm{s}^{2}$ as opposed to Calvin's $2.0 \mathrm{~m} / \mathrm{s}^{2}$. In the end, Hobbes finished 16 m behind Calvin. Determine the length of the race.

In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straight-away at 252 km / h. The driver of the Thunderbird realizes he must make a pit stop, and he smoothly slows to a stop over a distance of 250 m . He fallen behind the Mercedes Benz, which has continued at a constant speed?

$$
252 \frac{\mathrm{~km}}{\mathrm{n}}=70 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\begin{aligned}
& v_{i}=70 \frac{\mathrm{~m}}{5} \\
& d=250^{5}
\end{aligned}
$$

$$
V_{P}=0
$$

$t=$

$$
\frac{d}{t}=\frac{v_{i}+v_{f}}{2}
$$

$$
\frac{d}{t}=35
$$

$$
\begin{aligned}
t & =\frac{250}{35} \\
& =-210
\end{aligned}
$$

$$
=7.14 \mathrm{~s}
$$

\therefore The thunderbird covers

$$
\begin{aligned}
250 \mathrm{~m}+320 \mathrm{~m} & =570 \mathrm{~m} \\
\text { in } 7.14+5+9.14 & =21.28 \mathrm{~s}
\end{aligned}
$$

In this tine the $m B$ has $v=70 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\begin{aligned}
d & =v t \\
& =170)(21.28) \\
& =1490 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \text { The MB is } \frac{1490}{-510}
$$

ahead

A person driving her car at $45 \mathrm{~km} / \mathrm{h}$ approaches an intersection just as the traffic light turns yellow. She knows this yellow light lasts only 3.0 seconds before turning red and shere28-may from the near side of the intersection. The intersection is 15 m wide. Her car is capable of accelerating fro $45 \mathrm{~km} / \mathrm{h}$ to $65 \mathrm{~km} / \mathrm{h}$ in 6.0 seconds, and is capable of slowing down at a rate of 5.8 $\mathrm{m} / \mathrm{s}^{2}$.
a) If she hits the gas, will she make it across the intersection before the light turns red? b) If she slams on the breaks, will she stop in time?
Note: Ignore the length of the car and reaction time.
a)

$$
v_{f}=? \quad 1 v_{f}=0
$$

$$
\overline{v_{f}^{2}=v_{i}^{2}+2 a d} \quad v_{f}^{2} v_{c}^{2}+2 a d
$$

$$
\begin{aligned}
&=12.5^{2}+2(-5.8)(28) \\
&=\frac{v_{s}^{2}-v_{i}^{2}}{2 a} \\
&=15.25-324.8 \\
& v_{f}^{2}<0=\frac{0-12.52^{2}}{2(-5.5)} \\
&=13.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{V_{+}-V^{\prime}}{t}=\frac{18.1-12.5}{6} \\
& d=43 \mathrm{~m}=1 \\
& V_{i}=12.5 \frac{\mathrm{~m}}{5}, v_{i}=17.5 \mathrm{~m} \\
& a=0.93 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, a=0.93 \mathrm{~m} \\
& \begin{array}{lr}
t=? & 1 t= \\
d=v_{1} t+\frac{1}{2} a t^{2}
\end{array} \\
& =(12.5)(3)+\frac{1}{2}(0.93)(3)^{2} \\
& =37.5+4.18 \\
& =41.68 \mathrm{~m}
\end{aligned}
$$

